

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR

ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Affiliated to University of Mumbai with an Autonomous Status

Program: M.Sc. Biotechnology

M.Sc. Part-I

(Semester I & II) Choice Based Credit & Grading System (60:40)

Total Credits: 96 (To be implemented from Academic Year 2022-2023)

(Approved in the academic council meeting held on ______)

Preamble:

Master of Science (M.Sc.) Programme in Biotechnology is a P.G. Programme of Department of Biotechnology, Changu Kana Thakur Arts, Commerce & Science College, New Panvel, affiliated to University of Mumbai with an Autonomous status. Biotechnology is technology based on biology. Biotechnology harnesses cellular and bio-molecular processes to develop technologies and products that help to improve our lives and the health. Modern biotechnology provides breakthrough products and technologies to combat debilitating and rare diseases, reduce our environmental footprint, feed the hungry, cleaner energy, and have safer, cleaner, and more efficient industrial manufacturing processes.

The Choice Based Credit and Grading System (CBCGS) to be implemented through this curriculum would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities. The proposed credit-based curriculum and grading system will even add much more to the existing interdisciplinary nature of biotechnology.

Under the 'autonomy' we have made an attempt to design Master's in Biotechnology course syllabus to cater to the needs of credit based- semester and grading system. The changing scenario of higher education in India and abroad is taken into consideration to make this syllabus more oriented towards current need of modern research and industrial sectors.

The present M.Sc. Biotechnology Second Year (Semester-I and II) syllabus is based on the remodeled M.Sc. Biotechnology Curriculum, May 2017, Department of Biotechnology, Ministry of Science and Technology, Government of India and revised syllabus of University of Mumbai. Syllabus is robust and well-designed to enable students to pursue high quality research or increase employability of the students.

It is hoped that the revised syllabus shall serve its objective of promoting outcome-based learning to meet the changing needs of the biotechnology sector.

Programme Outcomes for M.Sc. Degree

Sr. No.	OUTCOME FOR M.Sc. PROGRAMME	GRADUATE
		ATTRIBUTE
After com	pletion of M.Sc. programme students will acquire	
PO-1	The ability to identify and describe broadly accepted	Disciplinary
	methodologies of science, and different modes of	knowledge
	reasoning.	
PO-2	An ability to demonstrate proficiency in various	Disciplinary
	instrumentation, modern tools, and advanced	knowledge
	techniques to meet industrial expectations and research	
	outputs.	
PO-3	Ability to identify problems, formulate, and prove	Problem-solving
	hypotheses by applying theoretical knowledge and skills	
DO 4	relevant to the discipline.	
P0-4	The ability to articulate thoughts, research ideas,	Communication
	information, scientific outcomes in oral and in written	SKIIIS
	A canonity for independent, concentual, and creative	Critical thinking
PO-5	A capacity for independent, conceptual, and creative	Critical thinking
	methods of onquiry	
PO_6	Acquisition of skills required for cutting edge research	Posoarch skills
10-0	investigations field study documentation networking	Research skills
	and ability to build logical arguments using scholarly	
	evidence.	
PO-7	An ability to portray good interpersonal skills with the	Teamwork
	ability to work collaboratively as part of a team	
	undertaking a range of different team roles	
P0-8	The ability to understand ethical responsibilities and	Moral and
	impact of scientific solutions in global, societal, and	ethical
	environmental context and contribute to sustainable	awareness/
	development.	multicultural
		competence
PO-9	An openness to and interest in, life-long learning through	self-directed
	directed and self-directed study.	learning
PO-10	The ability to translate the knowledge and demonstrate	Life-long
	the skills required to be employed and successful	learning
	professional development.	

Programme Specific Outcomes for <u>M.Sc. Biotechnology</u>

Name of the	M.C. Distachuslam				
Programme:	M.Sc. Biotechnology				
Upon completion of M.Sc. Biotechnology programme students will be able to:					
PSO-1	Demonstrate comprehensive knowledge and interdisciplinary skills in				
	the core and allied courses in biotechnology along with other emerging				
	trends.				
PSO-2	Apply modern Bio-analytical tools, techniques, software and				
	equipment to analyze and solve problems in different areas of				
	biotechnology.				
PSO-3	Design research problems, test hypothesis, prepare scientific report				
	and use biostatical and bioinformatics tools for data interpretation and				
	draw conclusions.				
PSO-4	Apply entrepreneurial skills and appraise bioethics, biosafety,				
	research ethics, and plagiarism and intellectual property rights.				

M.Sc. Biotechnology Course Structure

Course	Course Type	Course code	Marks	Credits	Nos of Lectures
1.1. Advanced Biological Chemistry	Core Course	PBT1ABC	100	4	4 4
1.2. Immunology	Core Course	PBT1IMM	100	4	4
1.3. Molecular Biology	Core Course	PBT1MOB	100	4	4
1.4. Emerging Techniques in Biological Sciences	Core Course	PBT1ETB	100	4	4
1.5. Practical-I Practical's of PBT1ABC & PBT1IMM	Core Course	PBT1PR1	100	4	8
1.6. Practical-II Practical's of PBT1MOB & PBT1ETB	Core Course	PBT1PR2	100	4	8
		Total	600	24	32

Semester I

Semester II

Course	Course	Course	Marks	Credits	Nos of
	Туре	code			Lectures
					/ week
2.1. Metabolism	Core Course	PBT2MET	100	4	4
2.2. Cellular Processes and	Core Course	PBT2CPD	100	4	4
Developmental Biology					
2.3. Bioprocess Technology	Core Course	PBT2BPT	100	4	4
2.4. Research Methodology and Scientific Communication Skills	Core Course	PBT2RMS	100	4	4
2.5. Practical-I Practical's of PBT2MET & PBT2CPD	Core Course	PBT2PR1	100	4	8
2.6. Practical-II Practical's of PBT2BPT & PBT2RMS	Core Course	PBT2PR2	100	4	8
		Total	600	24	32

Examination Scheme

Choice Based Credit System (CBCS)

Revised Scheme of Examination

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part and by conducting the Semester End Examinations with 60% marks in the second part. The allocation of marks for the Internal Assessment and Semester End Examination are as shown below:

A) INTERNAL ASSESSMENT : 40%

40 Marks

Sr. No	Particular	Marks
1	One periodical class test/ online examination to be	20 Marks
	conducted in the given semester.	
2	Any two tools out of these (10 Marks each)	20 Marks
	Group/Individual Project	
	Presentation and write-up on the selected topics of the	
	subjects / Case studies	
	Test on Practical Skills	
	Open Book Test	
	Quiz	

Question Paper Pattern

(Periodical Class Test for the courses at Post-Graduate Programmes)

Maximum Marks: 20 Duration 30 Minutes

Particular	Marks
Match the column / Fill in the Blanks / Multiple Choice Questions /	20 Marks
True/False / Answer in One or Two Lines (Concept based Questions)	
(1 Mark each)	

B) Semester End Examination :60%

Duration: The examination shall be of 2 $\frac{1}{2}$ hours duration.

Question Paper Pattern

Theory Question Paper Pattern			
1. There shall be five questions each of 12 marks.			
2. All questions shall be compulsory with internal options.			
3. Questions may be subdivided into sub questions a, b, c and the	allocation of		
marks depends on the weightage of the unit.			

Passing Standard

The learners to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment and Semester End Examination. The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 out of 60) separately, to pass the course and minimum of Grade D, in each project wherever applicable to pass a particular semester.

Semester-I

M.Sc. Biotechnology

Semester –I

Paper-I Advanced Biological Chemistry (PBT1ABC)

Course Objectives:	• To build upon the advanced concepts of protein str	ucture and	d functions.
	• To emphasize upon the role of enzymes and lipid a	ggregates.	
	• To introduce the students to recent trends in	n the bio	o-molecular
	structures and interactions.		
Course Outcomes:	After completing the course, Student will able to:		
	• Discuss protein structure, folding pathways and	diseases	within the
	context.		
	• Understand the enzyme catalysis, kinetics and relev	vance of er	nzymes.
	Apply methodologies of Biomolecular interactions	and DNA t	opology.
	Elaborate on significance of Membrane architecture	e and lipid	aggregates.
Units	Topics	Credit	Lectures
Unit-I	Primary structure of proteins and their	4	15
Protein Structure	determination – end group analysis; cleavage of		
and Folding	disulfide bond; separation, characterization of		
_	polypeptide chain; specific peptide cleavage		
	reactions.		
	Secondary structure: Alpha-Helix, Beta sheets, Turns		
	and loops. Super-secondary structures: Domains and		
	motifs. Ramachandran plot.		
	Tortiany structure fibrous (Collegon) and globular		
	(Muselship) structure. Drotein stability		
	(Myoglobin) structure, rrotein stability.		
	Quaternary structure: Subunit Interactions,		
	Symmetry in Proteins and Determination of Subunit		
	Composition (Hemoglobin).		
	Protein folding: Denaturation, Anfinsen's classical		
	experiment mechanisms and Pathways of Protein		
	folding. Molecular chaperons, Protein misfolding and		
	diseases.		

Unit- II	General characteristics of enzymes.	15
Enzymes and their	Engume estalucia general principles of estalucia	
Applications	Enzyme Activity Various factors influencing on zume	
	activity and Enzyme inhibition	
	activity and Enzyme minorition.	
	Enzyme kinetics: Significance; Rapid Equilibrium and	
	Steady State approach, Michaelis-Menten's and	
	Haldane equations, Significance of Km, Catalytic	
	efficiency and turnover number and Kinetic	
	perfection. Order of kinetics.	
	Methods of plotting enzyme kinetics data:	
	Lineweaver-Burk, Hanes-Woolf, Woolf,	
	Augustinsson-Hofstee, Eadie-Scatchard; Direct linear	
	plot; Advantages and disadvantages.	
	Relevance of enzymes in metabolic regulation,	
	activation, inhibition and covalent modification.	
	Clinical Enzymology- Enzymes as therapeutic agents	
	and diagnostic tools.	
** •. ***	Different forms of DNA, Super-helix topology- linking	
Unit-III	number, Twist and writhing number, measurement	15
Biochemistry of	of supercoiling and Topoisomerases.	
Nucleic acids	Commence and in the starial series of	
	Genome organization - bacterial genome; Structure of	
	Euchromatin, DNA re-acceptation kinetics (Cot curve	
	analysic): DNA molting and huovant density: DNA	
	methylation & Imprinting	
	methylation & mprinting.	
	Nucleic acid binding protein – Leucine Zipper, Zinc	
	fingers OB fold, Beta Barrel, Helix-turn-helix, and	
	Helix-loop-helix.	
	DNA motoin interaction Mathedalacias (
	DNA – protein interaction, Methodologies for	
	interactions	

Unit- IV	Composition and Architecture of membrane:	
Membrane	structural lipids in membranes, membrane bound	15
Architecture	proteins- structure, properties, and function.	
& Lipid Aggregates	Membrane Dynamics: lipid movements, flippase, FRAP, Lipid raft, Membrane fusion. Solubilization of the membrane by using different detergents	
	Lipid aggregates: micelles, bilayers and liposomes.	

1.	Stryer, L. (2015). Biochemistry. (8th edition) New York: Freeman.
2.	Lehninger, A. L. (2017). Principles of Biochemistry (7th edition). New York, NY: Worth.
3.	Voet, D., &Voet, J. G. (2018). Biochemistry (5th edition). Hoboken, NJ: J. Wiley & Sons.
4.	Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008).
5.	Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman.
6.	Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014).
7.	Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). MolecularBiology of the Cell. New York: Garland Science.
8.	Laouini et.al. Preparation, Characterization and Applications of Liposomes: State of the Art. journal of Colloid Science and Biotechnology Vol. 1, 147–168, 2012
9.	Lesk, A. M. (2004) Introduction to Protein Science: Architecture, Function, andGenomics. Oxford University Press, UK.
10.	Sheehan, D. (2009) Physical Biochemistry: Principles and Applications. John Wiley & Sons Ltd., UK.
11.	Uversky, V. N. and Fink, A.L. (2006) Protein Misfolding, Aggregation andConformational Diseases: Part A: Protein Aggregation and Conformational Diseases (Protein Reviews). Springer, USA.
12.	Enzymes: Biochemistry, Biotechnology & Clinical chemistry, (2001) Palmer Trevor, Publisher: Horwood Pub. Co., England.
13.	Metabolic Engineering: Principles and Methodologies. (1998). Gregory N Stephanopoulos, Aristos A Aristidou, Jens Nielsen. Publisher: Academic Press, San Diego, US.
14.	An Introduction to Practical Biochemistry.3rd Edition, (2001), David Plummer, Tata McGraw Hill Edu.Pvt.Ltd. India.
15.	Biochemical Methods.1st, (1995), S. Sadashivam, A. Manickam, New Age International Publishers, India.

M.Sc. Biotechnology Semester –I Paper-II Immunology (PBT1IMM)

Course Objectives:	The objectives of this course are to learn about structural features of components of immune system as well as their function. The major emphasis of this course will be on development of immune system and mechanisms by which our body elicits immune response. This			
	will be imperative for students as it will help them to	predict a	bout nature	
	of immune response that develops against bacteri	ial, viral o	or parasitic	
	infection.			
Course Outcomes:	 On completion of this course, students should be able to: Discuss structural features of components of immune system as well as their function. Explain the concept of cytokines, hypersensitivity reactions and Autoimmunity. Elaborate tumour immunology, immunodeficiency and Transplantation. Evaluate useful animal models in Immunology. Apply their knowledge and design immunological experiments to a state of the state o			
Units	Topics	Credit	Lectures	
Unit -I Overview of The Immune System	Overview of the Immune System Components of innate and acquired immunity; Phagocytosis; complement and inflammatory responses; pathogen recognition receptors (PRR) and pathogen associated molecular pattern (PAMP); innate immune response; mucosal immunity. Antigens: Immunogens, Hapten.	4	15	
	Humoral Immunology Immunoglobulin: fine structure and superfamily Multigene organization of Ig gene, Variable region gene rearrangement and generation of antibody diversity, Class switching among the constant region Synthesis, assembly, and secretion of Immunoglobulins, B-cell development, activation, differentiation and memory.			

	Cellular Immunology	
	T-cell development (Early thymocyte development,	
	Positive and negative selection, Apoptosis), T-cell	
	development, activation, differentiation and	
	memory (XA, IH).	
Unit -II	Cytokines: Properties, receptor, cytokine related	15
Immune effector	diseases and cytokine based therapies.	
Mechanism		
	Hypersensitivity Reactions: Type I –IV.	
	Autoimmunity: types of autoimmune diseases;	
	mechanism for Induction of Autoimmunity;	
	treatment of autoimmune diseases.	
Unit -III	Immunodeficiency: Primary immunodeficiency,	15
Clinical	acquired or secondary immunodeficiency.	
Immunology		
	Tumor immunology: tumor antigens; immune	
	response to tumors and tumor evasion of the	
	immune system, cancer immunotherapy.	
	Transplantation: immunological basis of graft	
	rejection; clinical transplantation and: clinical	
	transplantation and immunosuppressive therapy	
Unit- IV	Immunodiagnostics: Haem-agglutination and Blood	15
Immunodiagnostics	typing; Phage Display libraries; Microscopy and	
and Animal Models	Imaging; TUNEL Assay; Assay for cytotoxic T Cell.	
	Detection of Immunity in Vivo: Tuberculin Test,	
	Testing of allergic responses, Arthur Reaction and	
	adaptive transfer of Lymphocyte and	
	Haemotopoietic Stem Cell.	
	*	
	Animal models: Inbred-strain, Adoptive transfer	
	technique, Congenic-strain, Transgenic animals. and	
	their use in immunological studies, Knockout Mice.	

1.	Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby Immunology.
	New York: W.H. Freeman.
2.	Brostoff, J., Seaddin, J. K., Male, D., & Roitt, I. M. (2002). Clinical Immunology. London:
	Gower Medical Pub.
3.	Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New
	York: Garland Science.
4.	Elgert, Klaus D.: Immunology: Understanding the immune system. (2nd edition) Hoboken.
	John Wiley & Sons, Inc., 2009. 978-0-470-08157-0(616.079Elg).
5.	Paul, W. E. (2012). Fundamental Immunology. New York: Raven Press.
6.	Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and
	Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology.
	London: Academic Press.
7.	Parham, P. (2005). The Immune System. New York: Garland Science 7. C V Rao: An
	introduction to Immunology Narosa Publishing house 8. S. Pathak& U Palan: Immunology
	essential and fundamental, Second edition Parveen Publishing House.
8.	Praful Godkar: Textbook of Medical Biochemistry, Bahalani Publishers
9.	Medical Microbiology by Anantnarayan.
10.	Ian R Tizard: Immunology, An introduction, fourth edition, Thomson.
4.4	
11.	Abbas, A.K., Lichtman, A.H. and Pillai, S. (2007) Cellular and Molecular Immunology.
	Saunders Elsevier, USA.

M.Sc. Biotechnology Semester –I Paper-III Molecular Biology (PBT1MOB)

Course Objectives:	The objectives of this course are to provide knowledge related to different mechanisms of transcription, translation, Gene Expression and Regulation in Prokaryotes & Eukaryotes. Thus providing them an insight to the basis of molecular biology.		
Course Outcomes:	 After completing the course, Student will able to: Compare the mechanism of replication in prokaryotes and eukaryotes Elaborate on transcription in Prokaryotes & Eukaryotes Explain the different DNA damage and repair systems Discuss the mechanism of translation, gene expression and 		
	transposition		
Unit	Topics	Credits	Lectures
Unit- I Replication, Repair and Recombination	Replication mechanism in prokaryotes and eukaryotes; Enzymes and accessory proteins; Fidelity; Replication of single stranded circular DNA; Gene stability. DNA repair- enzymes; Photo-reactivation; Excision repair; Mismatch correction; SOS repair. Recombination: Homologous and non-homologous; Site specific recombination.	4	15
Unit- II Prokaryotic transcription and regulation	Prokaryotic Transcription: Transcription unit; Promoters, Operators, Regulatory elements, Initiation; Attenuation; Termination-Rho- dependent and independent; Anti-termination Transcriptional regulation-Positive and negative; Operon concept- <i>lac, trp and ara</i> operons Transcriptional control in lambda phage.		15

Unit-III Eukaryotic Transcription and Post Transcriptional Modifications	 Eukaryotic transcription and regulation; RNA polymerase- structure and types; Eukaryotic promoters and enhancers; General Transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); Transcriptional and post-transcriptional gene silencing. Post Transcriptional Modifications- Processing of hnRNA, tRNA, rRNA; capping and polyadenylation; Splicing; RNA editing; Nuclear export of mRNA; mRNA stability; Catalytic RNA. Regulatory RNA and RNA interference mechanisms. 	15
Unit-IV Translation and Transposition	Translation machinery; Ribosomes; Composition and assembly; Universal genetic code; Degeneracy of codons; Termination codons; Wobble hypothesis; Mechanism of translation ; Co- and post- translational modifications. Protein degradation: Ubiquitin-Proteasome pathway and lysosomal proteolysis. Transposition- Transposable genetic elements in prokaryotes and eukaryotes; Mechanisms of transposition; Role of transposons in mutation.	15

1.	Genes XI, 11th edition (2012), Benjamin Lewin, Publisher - Jones and Barlett Inc. USA
2.	J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levin, R. Losick. (2013). Molecular Biology of
	the Gene (7th edition). Benjamin Cummings, San Francisco, USA.
3.	R.F. Weaver (2007). Molecular Biology. (4th edition). McGraw Hill. New York. USA.
4.	Genome 3 T.A Brown
5.	iGenetics A Molecular Approach Third Edition, Peter J. Russell
6.	Molecular Biology, 5th Edition (2011), Weaver R., McGrew Hill Science. USA
7.	Lewin's GENES XII 2017 Jocelyn E. Krebs , Elliott S. Goldstein , Stephen T. Kilpatrick Jones
	and Bartlett Publishers

M.Sc. Biotechnology Semester –I

Paper-IV- Emerging Techniques in Biological Sciences (PBT1ETB)

Course Objectives:	The objectives of this course are to provide intr	roductory l	knowledge
	concerning genomics, proteomics and their applicati	ons. The stu	idents will
	be given exposure to advanced analytical tools to stu	dy biologica	ıl system.
Course Outcomes:	After completing the course, Student will able to:		
	Illustrate the principle underlying various a	dvance mic	roscopy &
	spectroscopy and proteomics techniques		
	Elaborate on emerging techniques in Genomic	cs & Transci	riptomics
	Discuss the advanced techniques used in mole	ecular cytog	enetics
	• Understand the principle & application of the	CRISPR-CA	S system
Unit	Topics	Credits	Lectures
Unit-I	Microscopy: Scanning and Transmission	4	15
Advanced	microscopes: different fixation and staining		
Microscopic and	techniques for EM, Freeze-etch and freeze- fracture		
Techniques	methods for EM, Image processing methods in		
reennques	microscopy. Confocal microscopy, Atomic Force		
	Microscopy, Super-Resolution Imaging with		
	Stochastic Optical Reconstruction Microscopy		
	(STORM) and Photo-activated Localization		
	Microscopy (PALM).		
	Spectroscopy- Principle and applications of UV		
	Visible, ORD, CD, NMR, FTIR, ESR and X-ray		
	diffraction.		
Unit-II	Protein purification and characterization		15
Protein	Techniques: Dialysis, Salting in and Salting out,		
Purification & its	Chromatography: Size exclusion, Affinity, Ion-		
Characterization	exchange and FPLC. 2D-PAGE, isoelectric focusing,		
	Mass spectrometry and its versions.		
	Protein Expression Profiling: Protein Microarrays/		
	Protein chips: Types and applications.		
	Gel-based quantitative proteomics: DIGE		
	(Difference in Gel Electrophoresis).		
	Gel-free based quantitative proteomic: Surface		
	plasmon resonance.		
	In vivo and In-vitro labelling- SILAC and ICAT		

Unit-III Functional & Comparative genomics and Transcriptomics	Genomics: Gene expression by SAGE and Microarrays: Construction of microarrays – genomic arrays, cDNA arrays and oligo arrays and its applications. Next Generations Sequencing (NGS): Principles and Instrumentation.	15
	Assigning Gene Function Experimentally: Gene Knockouts in Yeast, Mouse & <i>Mycoplasma genitalium</i> , Metagenomic Analysis.	
	Transcriptomics: Northern blotting, DDRT PCR, gel free assays like biolayer interference	
Unit-IV	Advanced fluorescence techniques: Fluorescence	15
Molecular	Lifetime (FLIM), Fluorescence Resonant Energy	
Cytogenetics	Transfer (FRET), Fluorescence Correlation	
	Spectroscopy (FCS)	
	Advanced Cytogenetic techniques and applications -	
	FISH, M-FISH, SKY, CGH, Marker Chromosomes, and	
	Prenatal Diagnosis of Common Aneuploidies.	
	CRISPR CAS: History, principle and Applications.	
	Identification and classification of organisms using	
	Molecular markers- 16S rRNA typing/sequencing.	

1.	Principles and Techniques of Biochemistry and Molecular Biology,7th edition, (2010),		
	Wilson K.M., Walker J.M., Cambridge University Press, U		
2.	Biophysical chemistry by Upadhyay, Upadhyay and Nath, Himalaya publication house.		
3.	Biophysics. 1st edition (2002), Pattabhi V and Gautham N. Kluwer Academic Publisher,		
	USA.		
4.	Huang, B., Bates, M., & Zhuang, X. (2009). Super-Resolution Fluorescence Microscopy.		
	Annual Review of Biochemistry, 78(1), 993-1016.		
	doi:10.1146/annurev.biochem.77.061906.092014		
5.	Molecular Cytogenetics: Protocols and Applications, Edited by: Y. S. Fan © Humana Press		
	Inc., Totowa, NJ 2001.		
6.	Lander, E. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. Doi: 10.1016/j.		
	cell.2015.12.041.		
7.	Genomics. Seventh Edition. Blackwell Publishing, USA		
8.	Microarray and Microplates: Applications in biomedical sciences Shu Ye, Ian Day, 2003,		
	Bios Scientific Ltd, oxford.		
9.	iGenetics A Molecular Approach Third Edition, Peter J. Russell		

M.Sc. Biotechnology Semester –I PRACTICAL- I (PBT1PR1) (Practicals of PBT1ABC and PBT1IMM)

1.	Preparation of buffers and Reagents
2.	Viscosity study of protein.
3.	Titration of amino acids and calculation of pK value
4.	Protein Estimation using the following methods: Bradford and Folin Lowry method
5.	Experimental verification that absorption at OD260 for denatured DNA as compared to native double stranded DNA
6.	Isolation partial purification and Characterization of any one enzyme
	 Preparation of cell-free lysates Ammonium Sulfate precipitation Dialysis of the purified protein solution Enzyme assay Generating a Purification Table
	Enzyme Kinetic Parameters: Km, V _{max} and K _{cat}
7.	LDH Zymography
8.	Video demonstration of membrane dynamics
9.	Cell permeability testing- osmotic fragility
10.	Preparation of TAB and sterility testing
11.	Perform serum electrophoresis (horizontal)
12.	To perform the Dot blot assays
13.	To check antibody titer by Tube precipitation test
14.	In-vitro demonstration of phagocytosis and calculating phagocytic index
15.	Latex bead agglutination / precipitation test for detection of rheumatoid factor (RF).
16.	Separation of lymphocytes on Ficoll Histopaque and viability count
17.	Demonstration/Video of tuberculin test, hypersensitivity reaction Arthur reaction.
18.	Complement fixation test

M.Sc. Biotechnology Semester –I PRACTICAL- II (PBT1PR2) (Practicals of PBT1MOB & PBT1ETB)

08 Credits

1.	Diauxic growth curve of <i>E.coli</i>
2.	Extraction of Genomic DNA Extraction from Bacteria and separation by Agarose gel electrophoresis
3.	Extraction of Genomic DNA Extraction from human samples (Cheek cells, Blood) and separation by Agarose gel electrophoresis
4.	Restriction Enzyme digestion of plasmid DNA
5.	Ligation Reaction
6.	Conjugation in bacteria
7.	Demonstration/ video of 2D PAGE
8.	Demonstration of affinity & gel filtration chromatography techniques
9.	Microscopy types Confocal, Fluorescence, STORM – videos and pictures – Write up
10.	To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law
11.	Photo album of chromosomal abnormalities in normal and disease condition:
	• Numerical Detected By Using Different Probes – Centromeric, Locus Specific,
	Telomeric Structural -Translocations and Fusion Genes
	Detection Of Inversions And Interstitial Deletions By SKY
	CGH For a disease or cancer
12.	Overview of MALDI-TOF-MS Virtual
13.	Recovery of DNA from low-melting temperature agarose gel
14.	To resolve soluble proteins by Native PAGE followed by staining with Coomassie Brilliant Blue R-250
15.	To resolve soluble proteins by discontinuous, SDS-gel electrophoresis under denaturing conditions followed by staining with Coomassie Brilliant Blue R-250 and silver stain
16.	Identification of protein using analytical technique Mass spectroscopy (demonstration)
17.	FTIR/NMR spectrum based theory questions

Semester –II

M.Sc. Biotechnology Semester –II Paper-I Metabolism (PBT2MET)

Course Objectives:	The objectives of this course are to build upon knowledge of biochemical principles with specific emphasis on different metabolic pathways. The course shall make the students aware of various disease pathologies within the context of each topic.		
	 Illustrate major metabolic pathways with Principles of Metabolic regulations. Justify role of metabolic pathways in various disease pathology. Correlate different adaptations in plants with respect to carbon assimilation. Discuss role of phytochemicals. 		
Units	Topics	Credit	Lectures
Unit –I Bioenergetics, Carbohydrate & Lipid Metabolism	 Bioenergetics and Thermodynamics-basic principles; equilibria and concept of free energy; coupled interconnecting reactions in metabolism and common Biochemical reactions. Carbohydrate Metabolism- Overview of major pathways of carbohydrate metabolism. HMP and Uronic acid pathways with their significance, Metabolism of other important sugars – fructose. Coordinated regulation of glycogen breakdown and synthesis. Inborn errors of carbohydrate metabolism. Synthesis of essential fatty acids- Overview. 	4	15
Unit -II Amino-acid and Nucleic acid Metabolism	Biosynthesis of essential amino acids. Metabolic breakdown of amino acids leading to Krebs cycle intermediate. Disorders of amino acid metabolism.		15

	Nucleic acid metabolism Biosynthesis and	
	degradation of purines and pyrimidines with	
	regulation, disorders of Nucleic acid metabolism.	
Unit –III	C-3 cycle and C-4 cycles. CAM. glyoxalate	15
Plant metabolism	pathway, photosynthetic formation of hydrogen.	_
	Integration of carbohydrate metabolism in plants	
	Nitrogen fivation and role of nitrogenase	
	Annamov reactions	
	Annamox reactions.	
	Plant secondary metabolism - Introduction	
	Pathways for secondary Motabalite 1 Mayalanata	
	Pathways for secondary Metabolite 1. Mevaloriate	
	pathways 2.Shikimate Pathway 3.Isoprene Unit	
	Pathways Major Secondary metabolites with	
	their functions (alkaloid, terpenoids, phenolics).	
Unit- IV	Principles of Metabolic regulations-Regulations	15
Principles of	of Metabolic pathways and analysis of Metabolic	
Metabolic	control. Integration of Metabolic pathways.	
regulations and		
Metabolic Engineering	Synthetic Biology-Introduction and applications.	
Engineering	Metabolic Engineering- Historical perspective	
	and introduction. Importance of metabolic	
	engineering, Plant and microbial metabolic	
	engineering-examples	
	Metabolic flux analysis. future of metabolic	
	engineering	

1.	Lehninger, Principles of Biochemistry. 7th Edition (2008), David Nelson& Michael
	Cox, W.H. Freeman and company, NY
2.	Phytochemical Method, 3rd edition (1998), A.J. Harborne, Springer, UK.
3.	Pharmacognosy, 14th edition, (2008), Dr. C. K. Kokate, A. P. Purohit, S. B. Gokhale,
	NiraliPrakashan, India
4.	Biochemistry: 7th Edition, (2012), Jeremy Berg, Lubert Stryer, W.H. Freeman and
	company, NY
5.	Voet, D., & Voet, J. G. (2016). Biochemistry (5th ed.). Hoboken, NJ: J. Wiley & Sons
6.	Harper's Biochemistry- 27th edition
7.	Devlin, Thomas M.: Textbook of biochemistry with clinical correlations. [ed. by]
	(7th ed.) Hoboken. John Wiley & Sons, Inc., 2011. 978-0-470-28173-4
	(612.015Dev
8.	Buchanan B; Gruissem W et al (2nd Ed.) Biochemistry and Molecular Biology of
	Plants John Wiley & Sons 2015.

M.Sc. Biotechnology Semester –II

Paper-II- Cellular Processes and Developmental Biology (PBT2CPD)

Course Objectives	The objectives of this course are to provide an	understand	ling of the
	functions of cells at molecular level and give a thore	ugh knowl	edge about
	protein trafficking, biomolecules, cellular devel	opment ai	nd Human
	Embryonic development.		
Course Outcomes	Students should be able to:		
	 Outline the concept of cell cycle regulation, cellula and trafficking. 	ar signaling	, transport
	 Determine the role of Cell ECM and cell -cell intera of cellular integrity and functions: 	ctions in m	aintenance
	• Analyze genes and genetic changes affecting	cycle regu	lation and
	mechanisms that lead to apoptosis.	, 0	
	• Understand Human Embryonic development a	ind Post f	ertilization
	events		
Unit	Topics	Credits	Lectures
Unit -I Cellular processes	Cell cycle and its regulation; Cell division: mitosis, meiosis and cytokinesis; Checkpoints in cell cycle regulation.	4	15
	Cell differentiation: stem cells, their differentiation into different cell types and organization into specialized tissues; cell-ECM and cell-cell interactions; Cell Signalling: Principles of signalling, Signalling molecules, receptors and their functions.		
	Intercellular communications: nerve impulses, Neuro-transmitters; agonist & antagonist Reactions.		
	Cell death: different modes of cell death and their regulation.		
Unit -II	Molecular mechanisms of membrane transport,		15
Cellular transport,	nuclear transport Protein Transport:		
	-		

	Folding, and Quality Control in the ER, Protein sorting and export from Golgi Apparatus. Sorting of Proteins: to Mitochondria and Chloroplasts. Molecular Mechanisms of Vesicular Traffic, early and later Stages of the Secretory Pathway, Receptor-Mediated Endocytosis.	
Unit -III Genome instability and cell transformation	Mutations, proto-oncogenes, oncogenes and tumour suppressor genes, physical, chemical and biological mutagens; types of mutations; intra- genic and inter-genic suppression; role of transposons in genome; viral and cellular oncogenes; tumor suppressor genes; structure, function and mechanism of action; activation and suppression of tumor suppressor genes; oncogenes as transcriptional activators.	15
Unit- IV Human Embryonic Development and Model Organism	Human Embryonic development: Events during fertilization, in-vitro fertilization, Zona Pellucida, glycoprotein, Oelemma protein and their role in fertilization, sperm antigens and their functional significance. Molecular and biochemical events during sperm function. Post fertilization events Major Model Organism in Developmental Biology: Xenopus, Zebra fish, Chick, Mouse, <i>C. elegans</i> , Drosophila	15

1.	Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (5th Ed.). New York: Garland Science.
2.	Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman.
3.	Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014). Lewin's Genes XI. Burlington, MA: Jones & Bartlett Learning.
4.	Cooper, G. M., & Hausman, R. E. (2013). The Cell: a Molecular Approach (6th Ed.). Washington: ASM; Sunderland.
5.	Hardin, J., Bertoni, G., Kleinsmith, L. J., & Becker, W. M. (2012). Becker's World of the Cell. Boston (8th Ed.). Benjamin Cummings.
6.	Watson, J. D. (2008). Molecular Biology of the Gene (5th ed.). Menlo Park, CA: Benjamin/Cummings.

M.Sc. Biotechnology Semester –II Paper-III-Bioprocess Technology (PBT2BPT)

Course Objectives	The objectives of this course are to educate	students	s about the
	fundamental concepts of bioprocess technolog	gy and	its related
	applications, thus preparing them to meet the chall	enges of	the new and
	emerging areas of the biotechnology industry.		
Course Outcomes	Students should be able to:		
	Appreciate relevance of microorganisms from inc	lustrial c	ontext
	Give an account of design and operations of vario	us ferme	nters
	 Calculate yield and production rates in a biological 	l produc	tion process,
	interpret data and need for oxygen and oxygen tra	ansfer;	
	 Understand important microbial/enzymatic indus 	strial pro	cesses in the
	food and fuel industry.		
Unit	Topics	Credits	Lectures
Unit- I	Sources of Microorganisms Used in Biotechnology-	4	15
D · · ·) C	Literature search and culture collection supply,		
Basic principles of	Isolation de novo of organisms producing		
biochemical	metabolites of economic importance.		
engineering			
	Strain Improvement- Selection from naturally		
	occurring variants, Manipulation of the genome of		
	industrial organisms in strain improvement		
	Bioreactor design and analysis- Batch and		
	continuous fermenters; modifying batch and		
	continuous reactors: chemostat with recycle,		
	multistage chemostat systems, fed-batch		
	operations; conventional fermentation v/s		
	biotransformation; immobilized cell systems;		
	large scale animal and plant cell cultivation;		
	Upstream processing: media formulation and		
	optimization; sterilization; aeration, agitation and		
	heat transfer in bioprocess; scale up and scale		
	down; measurement and control of bioprocess		
	parameters. fermentation economics		

Unit- II	Downstream processing and product recovery	15
Downstroom	Separation of insoluble products - filtration,	
Downstream	centrifugation, sedimentation, flocculation; Cell	
processing,	disruption; separation of soluble products: liquid-	
Industrial	liquid extraction, precipitation, chromatographic	
Production and	techniques, reverse osmosis, ultra and	
Recovery	microfiltration, electrophoresis; final purification:	
processes	drying; crystallization; storage and packaging.	
	Industrial Production and Recovery process	
	of following (with one example each):	
	Vitamins, Amino acids, Enzymes (Extra and Intra	
	cellular), Antibiotics, Organic acids,	
	Production of recombinant pharmaceuticals,	
	Human growth hormone, Interferon vaccines.	
	Biotransformation product (Steroids)	
Unit- III	Rationale for immobilizing enzymes, Methods for	15
Applications of	enzyme immobilization, Properties of immobilized	
enzyme	enzymes, applications of immobilized enzymes.	
technology		
	Industrial applications of enzymes in	
	pharmaceuticals, food industries, Detergents,	
	paper and leather processing.	
	Enzyme Engineering and its applications.	
Unit- IV	Microbial biomass production - mushrooms, SCP	15
Applications of	Fermented foods and beverages: Sauerkraut	
microbial	production, soya bean fermentations, coffee, cocoa	
technology in	and tea fermentations	
food process	Food additives and supplements –	
operations and	Lipids, Nucleosides, nucleotides and related	
biofuels	compounds – Vitamins	
	Natural food preservatives - bacteriocins from	
	lactic acid bacteria – production and applications	
	e.g., Nisin	
	Microbial production of colours and flavours.	
	Polyhydric alcohols: low -calorie sweetener	
	particularly useful for sweetening food products	
	for diabetics	

Microbial exo-polysaccharides - Xanthan gum	
Process Food wastes- for bioconversion to useful	
products (Compost, biofuels, biomass cheap	
source of raw material in fermentation etc.)	

1.	Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts.
	Upper Saddle River, NJ: Prentice Hall.
2.	Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford:
	Pergamon Press.
3.	Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineering. New York: M. Dekker.
4.	Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New York:
	McGraw-Hill.
5.	El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and Biotechnology.
	Boca Raton: CRC/Taylor & Francis.
6.	Alexander N. Glazer and Hiroshi Nikaido -Microbial Biotechnology: Fundamentals
	ofApplied Microbiology, 2ndEdition
7.	Michael Waites and Morgan , Rockney and Highton -Industrial microbiology : An
	Introduction
8.	Nduka Okafor Modern industrial microbiology and biotechnology Science Publishers,
	Enfield,
9.	Robert Whitehurst and Maarten Van Oort - Enzymes in food technology 2nded
10.	Lee, Y. K. (2013). Microbial Biotechnology: Principles and Applications.
	Hackensack,NJ: World Scientific.

M.Sc. Biotechnology Semester –II

Paper-IV-Research Methodology and Scientific Communication Skills (PBT2RMS)

Course Objectives	The objectives of this course are to acquire the al	oility to	articulate
	thoughts, research ideas, information, and scientific	c outcom	es in oral
	and in written presentation to a range of audience.	The cour	se mainly
	emphasizing methodologies used to do research,	use fram	ework of
	these methodologies for understanding effective	lab prac	tices and
	scientific communication and appreciate scientific et	hics.	
Course Outcomes	After completing the course, Student will able to:		
	• Design research problems, formulating the	objecti	ives, test
	hypotheses and prepare scientific reports i	ising ap	propriate
	research processes.		,
	• Appraise Research writing, Research ethics,	Data fuc	lging and
	Plagiarism with the help of statistical and referen	ncing sof	tware.
	Develop the concept of effective communication,	presenta	tion skills
	and computing skills for scientific research.	11	1.1
	Critically analyze the classical papers in biotechr	hology th	rough the
	existing methods of enquiry.		
** *.		a 11.	• -
Unit	Topics	Credits	Lectures
Unit Unit-I	Topics Scientific Research: Meaning of Scientific Research,	Credits 4	Lectures 15
Unit Unit-I Scientific Research	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research. Identification of the problem: assessing the status of	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research. Identification of the problem: assessing the status of the problem, formulating the objectives,	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses,	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research. Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology:	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research. Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem Research Process	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem Research Process Research Design/Plan: Preparing Research design	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem Research Process Research Design/Plan: Preparing Research design (experimental or otherwise), Actual investigation,	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem Research Process Research Design/Plan: Preparing Research design (experimental or otherwise), Actual investigation, Surveys - Case Study - Field Studies & others.	Credits 4	Lectures 15
Unit Unit-I Scientific Research and Research Methodology Unit-II	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem Research Process Research Design/Plan: Preparing Research design (experimental or otherwise), Actual investigation, Surveys - Case Study - Field Studies & others.Research in Practice: Literature review, Journals,	Credits 4	Lectures 15 15
Unit Unit-I Scientific Research and Research Methodology Unit-II Research Ethics	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem Research Process Research Design/Plan: Preparing Research design (experimental or otherwise), Actual investigation, Surveys - Case Study - Field Studies & others.Research in Practice: Literature review, Journals, Conference Proceedings, Journal Impact factor,	Credits 4	Lectures 15 15
Unit Unit-I Scientific Research and Research Methodology Unit-II Research Ethics	TopicsScientific Research: Meaning of Scientific Research, Definition, Characteristics, Types of Research, and Need of research.Identification of the problem: assessing the status of the problem, formulating the objectives, Hypotheses, Research Methods and Methodology: Selecting & defining Research problem Research Process Research Design/Plan: Preparing Research design (experimental or otherwise), Actual investigation, Surveys - Case Study - Field Studies & others.Research in Practice: Literature review, Journals, Conference Proceedings, Journal Impact factor, Citation Index, h, g, h-g index,	Credits 4	Lectures 15 15

	Research Ethics: Social implications of research,	
	biosafety issues Animal experimentation ethics,	
	wild-life ethics and human experimentation ethics	
	Data fudging and Plagiarism: Definition, Common	
	types of plagiarism, Intentional and Unintentional	
	plagiarism, Detection of plagiarism by anti-	
	plagiarism tools (Turnitin, Duplichecker, Viper,	
	Copyleaks), Use of URKUND, Turnitin and	
	iThenticate software, Penalties for Plagiarism,	
	Avoiding plagiarism.	
Unit-III	Concept of effective communication- setting clear	15
Process of	goals for communication; determining outcomes	
communication	and results; initiating communication; avoiding	
	breakdowns while communicating; creating value in	
	conversation; barriers to effective communication;	
	Presentation skills - formal presentation skills:	
	preparing and presenting using overhead projector.	
	PowerPoint: defending interrogation: scientific	
	noster preparation & presentation: participating in	
	groun discussions.	
	Computing skills for scientific research - web	
	browsing for information search search engines	
	and their mechanism of searching, hidden Web and	
	its importance in scientific research: internet as a	
	medium of interaction between scientists: effective	
	amail strategy using the right tone and conciseness	
Unit IV	Scientific Communication: Importance of scientific	15
Scientific	some scientific communication: Importance of scientific	15
scientific	Logical organization of scientific data and	
communication	documentation	
	Different modes of scientific communication.	
	Scientific Writing, What are Scientific Writing Skille	
	Cood Scientific Writing Skills	
	Decearch Droposal uniting, Format and lawout	
	Research Proposal writing: Format and layout	
	Research Paper writing: Format and layout	
	Report Writing: Format and layout	
	Inesis writing : (Introduction, Literature review,	
	Materials and Methods, Results, Discussion,	
	Conclusion and Implications, conflict of interest)	

Legal forms of communication in science: Plagiarism	
and scientific misconduct, Ethics in scientific	
communication, Patent submissions.	

1.	Research methodology Techniques and Methods by C. R. Kothari, New age International publishers.
2.	Valiela, I. (2001). Doing Science: Design, Analysis, and Communication of Scientific Research. Oxford: Oxford University Press.
3.	On Being a Scientist: a Guide to Responsible Conduct in Research. (2009). Washington, D.C.: National Academies Press.
4.	Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist, 78 (Nov-Dec 1990), 550-558.
5.	Mohan, K., & Singh, N. P. (2010). Speaking English Effectively. Delhi: Macmillan India.
6.	Movie: Naturally Obsessed, The Making of a Scientist.
7.	Michael Alley, The Craft of Scientific Writing, fourth edition, Springer, 2018.
8.	Stephen B. Heard, The Scientists Guide To Writing, Princeton University Press, 2018.
9.	Fisher R A, The Design of Scientific Experiment (1971) 9th edition, Collier Macmillan Publishers, London
10.	Martha Davis, Scientific Papers And Presentations 2nd edition (2004), Academic Press
11.	H. Hofmann, Scientific Writing and Communication Papers, Proposals, and Presentations. New York: Oxford University Press, 2010, pp. xv–xvi
12.	John D'Angelo, Ethics in Science: Ethical Misconduct in Scientific Research (2012),CRC Press, USA
13.	David B. Resnik, The Ethics of Science: An Introduction (1998), Routledge Publication, UK5.

M.Sc. Biotechnology Semester –II PRACTICAL- I (PBT2PR1) Practicals of (PBT2MET+ PBT2CPD)

1.	Isolation of starch from potato and its estimation by anthrone method
2.	The isolation and assay of glycogen from liver and skeletal muscles of bird/mammal
3.	Isolate chloroplasts from the given plant material, quantitate and resolve the proteins
	by SDS-PAGE to identify major chloroplast proteins
4.	TLC for amino acid separation
5.	Detection of saponification and Iodine value of lipids
6.	Estimation of urate/creatinine ratio to diagnose Lesch Nyhan syndrome
7.	Detection of phenylalanine for PKU
8.	Secondary metabolite study-Extraction and Qualitative estimation of phyto- constituents
9.	Determination of total Nitrogen content by Kjeldahl method
10.	Programmed cell death during limb development in Chick
11.	Karyotyping and Ideogram construction in onion roots using Colchicine treatment
12.	Candling, Observing chick embryo- stages of development: prepared slides/ preserved
	specimens
13.	Developmental Biology- Visit to laboratory/ video lectures for latest Developments in
	the field
14.	Cell death /apoptosis studies using flow-cytometry demonstration
15.	Isolation of cell organelle by differential centrifugation techniques from plant / animal
	sources

M.Sc. Biotechnology Semester –II PRACTICAL- I (PBT2PR1) Practicals of (PBT2BPT+ PBT2RMS)

1.	Maintenance of the isolated production organism (Agar slants/ glycerol stocks
	/soil culture/ lyophilization) at least two methods
2.	Demonstration of media optimization by Placket Burman test
3.	Study of Working of lab bench fermenter (with production of enzyme or
	antibiotic using screened organism)
4.	Immobilize an organism / enzyme and detect the conversion of substrate to
	product
5.	Physico-chemical characterization of an industrial effluents
6.	Pigment production and isolation from a microbial source (yeast, fungi or
	bacteria) Spirulina
7.	Recovery and Assay of product formed (Bioassay or Enzyme assay)
8.	Detection of different food enzymes by simple tests (amylase, catalase, invertase,
	papain, pectinase, pepsin)
9.	Study of the pickling process (sauerkraut / pickled cucumbers) with respect to
	physical, chemical / biochemical and biological changes occurring during the
	pickling process
10.	Visit to industry and Report writing
11.	Research Methodology:
	Review writing/ Report writing/Research paper writing
	(Following proper Research methods/Methodology)
12.	Scientific presentation of research paper from a reputed journal.
13.	Research Data collection and analysis from different Sources
	Research Data collection and analysis from Primary Sources
	Research Data collection and analysis from Secondary Sources
	Research Data collection and analysis for Survey based Research
	Different Sampling methods for Research
14.	Scientific communication:
	Gathering scientific data from various sources.
	• Written communication: Guide to clear writing, forms and styles of
	writing
	Scientific publication writing
	Oral communication variants
	Concept of Plagiarism

15.	Write a research proposal on any topic of your interest from the MSc syllabus.
	(For research proposal contents and format refer to NSF guidelines.
	https://www.nsf.gov/pubs/policydocs/pappg19 1/nsf19 1.pdf, For reference
	work use Mendeley Desktop. <u>https://www.mendeley.com/guides/desktop</u>)
16.	To study a patent and to develop a patent application for a hypothetical product
	or process.
17.	Critical Analysis of Classical Papers:
	How does the Course Module work?
	Students may be divided in groups and each group may be responsible for one
	classical paper. Each week there may be a 1.5 hour presentation cum discussion
	for each of the papers. At the end of the semester each student will be asked to
	write a mini-review (2-3 pages long) on any one classical paper, other than the
	one he/she presented/discussed.
